
acm
cz
acm
cz

Czech ACM Student Chapter Czech Technical University in Prague

Charles University in Prague Technical University of Ostrava
Masaryk University University of Žilina

Pavol Jozef Šafárik University in Košice Matej Bel University in Banská Bystrica
Slovak University of Technology

CTU Open Contest 2022

CTU Open 2022 is proud to feature one of the most unorthodox thinkers and inventors of all
times. Jara Cimrman’s ideas and solutions continue to fascinate researches around the globe
for more than a century now. The relationship between Cimrman and computer science have
been so far less explored, though his contribution to the field is immense, to say the least. We
managed to collect genuine programming problems related to Cimrman’s explorations. Some
of them may seem too easy or too complex, but that only reflects the nature of any scientific
scrutiny. With open mind, strong determination and a piece of luck, a success is always within
your reach, this is one of many everlasting messages of Cimrman’s genius. We wish your results
in the Contest to be comparable to those of Cimrman in his own endeavours, and even more
excellent and outstanding.

Your programs can be written in C, C++, Java or Python programming languages. The choice
is yours but you will be fully responsible for the correctness and efficiency of your solutions. All
we need is the correct answer produced by your code in some appropriate time.

All programs will read text from the standard input only. The results must be written to the
standard output. You are not allowed to use any other files, communicate over network, or
create processes. Input and output formats are described in problem statements and must be
strictly followed. Values given on one line are separated by one space, if not specified otherwise.
Do not print anything more than required. Each printed text line (including the last one) should
be terminated by a newline character (“\n”), which is not considered to be a part of that line.

Good luck, thank you for coming to our contest, and see you again in 2023!

acm
cz
acm
cz

Czech ACM Student Chapter Czech Technical University in Prague

Charles University in Prague Technical University of Ostrava
Masaryk University University of Žilina

Pavol Jozef Šafárik University in Košice Matej Bel University in Banská Bystrica
Slovak University of Technology

CTU Open Contest 2022

Array

array.c, array.cpp, Array.java, array.py

In his backyard, Cimrman had created a breakthrough bionic solar array installment.

The array is made of separate cells arranged in a triangular layout. The layout consists of parallel
rows, the first row contains one cell, and then the number of cells in each row is always one more
than the number of cells in the immediately preceding row. The distances between adjacent
cells in each row are the same and they are the same in all rows, and the distances between the
consecutive rows are the same. The layout is also symmetrical along the axis perpendicular to
the rows and going through the middle of the cell in the first row.

The cells at both ends of all rows and also the cell in the first row are the so-called elementary
cells and they are all labelled by 1.

The labelling scheme for the remaining cells is more intricate. Each of the remaining cells in
a particular row is connected to exactly two cells in the previous row. These two cells are the
closest ones in the previous row to the given cell. The label of the given cell is equal to the sum
of the labels of the cells in the previous row to which it is connected.

The cells are maintained by an automated pentacopter. When a cell needs a maintenance it
sends out a request containing its label. The pentacopter has to locate the row of the cell when
it is given only the label of the cell.

Input Specification

The first input line contains one integer Q (1 ≤ Q ≤ 105), the number of maintenance requests.
Each of the next Q lines contains an integer N(1 ≤ N ≤ 109), the label of a cell producing the
request.

Output Specification

Output Q lines, for each request print the smallest possible number of a row in the array on
which the cell requesting a maintenance is located.

Sample Input 1

5

1

3

66

330

10

Output for Sample Input 1

1

4

13

12

6

acm
cz
acm
cz

Czech ACM Student Chapter Czech Technical University in Prague

Charles University in Prague Technical University of Ostrava
Masaryk University University of Žilina

Pavol Jozef Šafárik University in Košice Matej Bel University in Banská Bystrica
Slovak University of Technology

CTU Open Contest 2022

Canoes

canoes.c, canoes.cpp, Canoes.java, canoes.py

Cimrman had built a whole fleet of special weather prediction molybdenum canoes. Each canoe
was separately built in its own dry dock. Consequently, the shore is littered with dug out
patterns of dry docks, some of them even intersect each other, some of them are separate.

A dry dock is a rectangle with width of one standard unit and its length is a few standard units,
always at least two. Each dock runs either in vertical or horizontal direction. Consequently,
each two docks run either in a parallel direction or in directions perpendicular to each other.
The width of each canoe is the same as the width of the dock and the length of the canoe is just
one unit shorter than the length of its dock.

Next week, a hurricane is expected in the area, and Cimrman wants each canoe to be put back
to the dock in which it was created. However, it is not immediately clear whether such universal
storage plan can be accomplished.

And, by the way, are there any square shaped canoes? Yes, Cimrman is capable of building
square molybdenum canoes.

Input Specification

The shore with docks is modelled as a rectangular grid, the size of its each elementary square
is equal to one standard unit. The first input line contains three positive integers H, W , N
(1 ≤ H,W ≤ 500, 1 ≤ N ≤ 250 000), giving the height of the grid, the width of the grid and
the number of docks in the grid.

Each of the following N lines specifies one dock. The dock is defined by four entries separated
by spaces. The first three entries X, Y , K are integers specifying the coordinates (X, Y) of one
end of the dock and the dock length K (number of grid squares occupied by the dock). It holds
that 1 ≤ X ≤ H, 1 ≤ Y ≤ W , and 2 ≤ K ≤ 500. The fourth entry on a row is one of characters
“L”, “R”, “U”, “D” and it specifies in which direction runs the dock from its start coordinate
(“L” - Left, “R” - Right, “U” - Up, “D” - Down). Moreover, no dock runs out of the bounds of
the shore, e.g. for a dock which runs Down with one end on coordinates (X, Y), it additionally
holds 1 ≤ X + (K − 1) ≤ H (and analogously for other directions).

Output Specification

Output one line “Yes” if all canoes can be stored back in their docks or “No” otherwise.

acm
cz
acm
cz

Czech ACM Student Chapter Czech Technical University in Prague

Charles University in Prague Technical University of Ostrava
Masaryk University University of Žilina

Pavol Jozef Šafárik University in Košice Matej Bel University in Banská Bystrica
Slovak University of Technology

CTU Open Contest 2022

Earthquake

earthquake.c, earthquake.cpp, Earthquake.java, earthquake.py

Cimrman has quite a number of collaborators. Tomorrow morning, he is planning to make
phone calls to many of them and his assistant had prepared a list of phone numbers on a sheet
of paper. Regrettably, an earthquake struck yesterday. The coffee and juice stored close to the
list had spilled out and made stains on the list. Upon close examination of the affected list, the
following turned out:

• No digit affected by a stain is readable.

• Each coffee stain covers exactly one digit in any of the numbers.

• There are at most two coffee stains on any of the numbers.

• Each juice stain covers one or more consecutive digits in any of the numbers.

• There is at most one juice stain on any of the numbers.

• No stain affects more than one number.

• No number has been affected by coffee and juice simultaneously.

Fortunately, Cimrman has an older list of his collaborators phone numbers. This older list was
stored in the drawer and it survived the earthquake undamaged. Now, it will help to restore
the damaged list. First, the assistant needs to know, to how many items on the old list may
correspond each of the items on the damaged list.

Input Specification

The first input line contains one integer N (1 ≤ N ≤ 104), the number of phone numbers in the
older undamaged list. Each of the next N lines contains one phone number consisting of exactly
9 digits, leading zeros are allowed. All numbers are mutually different. Next, there is a line with
one integer Q (1 ≤ Q ≤ 3 · 105), the number of phone numbers on the damaged list. Each of
the next Q lines contains one, possibly stained, phone number from the damaged list. A coffee
stain is represented by a question mark (“?”), a juice stain is represented by an asterisk (“*”).
There are no spaces in any numbers. The phone numbers are given in no specific order.

Output Specification

Output Q lines, the i-th line should contain the number of items in the undamaged list which
may correspond to the i-th item on the damaged list.

Sample Input 1

2

728147956

606327482

2

72814?956

622629145

Output for Sample Input 1

1

0

Sample Input 2

4

606200400

606200500

606300500

706200400

3

?06200400

6*00

606?00?00

Output for Sample Input 2

2

3

3

acm
cz
acm
cz

Czech ACM Student Chapter Czech Technical University in Prague

Charles University in Prague Technical University of Ostrava
Masaryk University University of Žilina

Pavol Jozef Šafárik University in Košice Matej Bel University in Banská Bystrica
Slovak University of Technology

CTU Open Contest 2022

Journals

journals.c, journals.cpp, Journals.java, journals.py

There is a stack of journals on Cimrman’s desk. The journals are printed in Cimrman’s own
printing house. Each journal front cover is charged slightly positively and the back cover is
charged slightly negatively. Different charges of the front and back cover help the journals to
stick better to each other when they are stacked in a single stack one upon another. When two
adjacent journals in the stack are positioned in such a way that either their front covers or their
back covers touch each other, the repulsion between the same charges in both covers makes the
stack more prone to collapse.

Cimrman wants his stack to be arranged in such a way that no two adjacent journals in the
stack produce the repulsion.

To set the stack into appropriate order he can repeat a single operation consisting of three moves.
In the first move (which may be empty), Cimrman puts aside some number of journals from the
top of the stack without changing their order. Next, he takes a pile of one or more journals from
the new top of the stack, flips this pile over, and puts it back on the stack. Finally, he moves
back onto the stack the journals removed from the stack in the first step. Again, no change of
the journal order appears in this move.

Obviously, Cimrman wants to perform as few operations as possible. The number of journals
moved or flipped in one operation is not important, the journals paper is light enough.

Input Specification

The journals’ front and back covers are represented by signs plus or minus (’+’ or ’-’) in the
input. The single line of input contains K (1 ≤ K ≤ 105) plus signs and K minus signs without
spaces between them. The input corresponds to the original orientation of the journals on the
stack.

Output Specification

Print the minimal number of operations to be performed to achieve a stack where no two adjacent
journals produce the repulsion.

Sample Input 1

+-+-+--+-+

Output for Sample Input 1

1

Sample Input 2

+--++-

Output for Sample Input 2

1

acm
cz
acm
cz

Czech ACM Student Chapter Czech Technical University in Prague

Charles University in Prague Technical University of Ostrava
Masaryk University University of Žilina

Pavol Jozef Šafárik University in Košice Matej Bel University in Banská Bystrica
Slovak University of Technology

CTU Open Contest 2022

Mower

mower.c, mower.cpp, Mower.java, mower.py

Cimrman’s newest lawn mower can juggle 17 ping-pong paddles and it can also play 2 electric
glass violins simultaneously.

To get his invention approved internationally, Cimrman has to play a game against the Vice-
Chair of the Patent Office and Cimrman has to win.

The rectangular lawn on the Patent Office field is divided into squares. The lawn is completely
unmown. The mower starts at a square selected by the Patent Office and this square is considered
to be already mown.

Then players take turns, the first player is Cimrman, the next player is the Vice-Chair. In each
turn, the player sends a remote control command to the mower which then moves itself to one
of the squares sharing an edge with the last mown square. The mower immediately mows the
entire square to which it had been moved and then it awaits a command of the next player’s
move. In a legal move, a player can send the mower only to one of yet unmown squares. They
cannot send the mower either outside the lawn or to any already mown square. The player who
cannot make a legal move loses and the other player wins.

Input Specification

The input consists of a single line with four space separated numbers W , H, X, Y (1 ≤ W,H ≤
109, 1 ≤ X ≤ W, 1 ≤ Y ≤ H). These values describe the width and the height of the Patent
Office lawn expressed in the number of squares, and the coordinates of the square where the
mower starts.

Output Specification

Output a single line with either Win if Cimrman can win the game no matter how well it is
played by his opponent, or Lose otherwise.

Sample Input 1

6 1 4 1

Output for Sample Input 1

Win

Sample Input 2

4 3 4 2

Output for Sample Input 2

Win

Sample Input 3

1 1 1 1

Output for Sample Input 3

Lose

acm
cz
acm
cz

Czech ACM Student Chapter Czech Technical University in Prague

Charles University in Prague Technical University of Ostrava
Masaryk University University of Žilina

Pavol Jozef Šafárik University in Košice Matej Bel University in Banská Bystrica
Slovak University of Technology

CTU Open Contest 2022

Needle

needle.c, needle.cpp, Needle.java, needle.py

Another unexpected invention of Cimrman, a marvel of microminiaturization, is the self-balancing
reactive needle.

It is capable of keeping itself upright and move itself freely on a flat surface in this orientation
without being supported by any external device. While moving, it can draw extremely thin
lines and curves. The trace the needle leaves is in fact only few molecules wide. However, the
drawing surface should be extremely clean.

Another needle experiment is in process. The drawing surface contains experimental points
which are divided into so-called clouds. The clouds arrangement is specific: Each cloud contains
at least three points. The area of the convex hull of each cloud is positive. The intersection of
convex hulls of any two clouds is empty.

The needle has to travel between two additional points S and T . None of these two points lies
inside the boundary of any cloud. The boundary of the cloud is considered to be the boundary
of the convex hull of the cloud.

The needle has to travel from S to T along a shortest possible route. It should not travel inside
the boundary of any cloud, the surface there may be unsuitable for the needle movement. On
the other hand, the needle can travel along any part of the boundary of any cloud.

Input Specification

The first input line contains five numbers N , Sx, Sy, Tx, Ty, the number of clouds, and the
coordinates (Sx, Sy) of the start point S and the coordinates (Tx, Ty) of the target point T ,
respectively. Next N lines contain description of cloud points in the following format. The i-th
line contains an integer number ci, the number of points in the i-th cloud. Next on the line,
there are 2 · ci numbers xi,j, yi,j for 3 ≤ j ≤ ci, the coordinates of the points in the i-th cloud.
All coordinates are integers in the range −2000 to 2000. All input points are pairwise distinct.
It is guaranteed that 1 ≤ N ≤ 200, and also

N∑

i=1

ci ≤ 500.

Output Specification

Output a single number, the length of the needle’s shortest path from S to T , avoiding interiors
of boundaries of all clouds. Your answer must be precise to 4 decimal digits.

Sample Input 1

1 0 0 10 0

3 4 2 7 3 5 -4

Output for Sample Input 1

11.8770543023

s t

Figure 1: Depiction of Sample Input 1 and its optimal solution (in blue/bold).

acm
cz
acm
cz

Czech ACM Student Chapter Czech Technical University in Prague

Charles University in Prague Technical University of Ostrava
Masaryk University University of Žilina

Pavol Jozef Šafárik University in Košice Matej Bel University in Banská Bystrica
Slovak University of Technology

CTU Open Contest 2022

Patio

patio.c, patio.cpp, Patio.java, patio.py

Cimrman wants to make a square patio floor using tiles of two colours, red and blue. The patio
floor should look like this (with the colors slightly faded in time):

Figure 1: One of Cimrman’s perfect patios

More specifically, the patio must have a square shape. Tiles of one of the colours are used as the
border of the square. The border must be exactly one tile thick. The tiles of the other colour
are used to fill the rest of the square. Also, the side of the square must consist of at least 3 tiles.

Cimrman has a long file of square red tiles and blue tiles, the size of all tiles is the same. From
this file, Cimrman is going to take some tiles to use them on the floor. Manipulating the file
is clumsy, so Cimrman wants the tiles to be taken easily from the file, meaning the taken tiles
have to form one contiguous subsequence in the file.

Before Cimrman starts the construction, he needs to know how many suitable subsequences of
tiles are there in the file.

Input Specification

The input consists of two lines. The first line contains integer N (1 ≤ N ≤ 2 · 105), the length
of the file of tiles. The second line contains string of N characters, representing the file of tiles.
Only two characters appear in the string, “X” represents a blue tile and “O” represents a red
tile.

Output Specification

Output the number of contiguous subsequences in the file from which Cimrman can construct
a nice square patio floor.

Sample Input 1

9

XXXOXXXXX

Output for Sample Input 1

1

Sample Input 2

10

XOXXXXXXXX

Output for Sample Input 2

2

acm
cz
acm
cz

Czech ACM Student Chapter Czech Technical University in Prague

Charles University in Prague Technical University of Ostrava
Masaryk University University of Žilina

Pavol Jozef Šafárik University in Košice Matej Bel University in Banská Bystrica
Slovak University of Technology

CTU Open Contest 2022

Robots

robots.c, robots.cpp, Robots.java, robots.py

Cimrman’s robot producing company Cimrman Dynamics is testing their new model, Long
Range Autonomous Trekking Bot (LRATB). LRATB has to find its way from village S to
village F in the region. For environmental and safety reasons, LRATB moves only at night and
each night its movement is limited to relocation from one village to some adjacent village along
a cycling path between the villages.

Another company, Overseas Dynamics, is testing their similar product in the same area. Their
humanoid robot called AtlasTiger also travels only at night and it always relocates itself from a
village to an adjacent one in one night.

Cimrman Dynamics programmers have no clue about the planned route of the competing com-
pany robot. They suspect that if the two robots stay for the whole day (from dawn till dusk)
in one village, the signal interference may damage their own robot navigation systems. Thus,
they want to plan the sequence of visited villages in such way that the two robots will never
meet in the same village in one day. They know only the location of AtlasTiger on the first day
of testing and know nothing about its further movements. Sometimes, if it helps the strategy,
LRATB may stay overnight in a village without leaving it at all. If the two robots meet briefly
at night travelling the same path in opposite directions, it poses no risk to their navigation.

Now, Cimrman Dynamics programmers want to plan the path of LRATB from village S to village
F so that it takes the shortest possible time and it is guaranteed that no signal interference will
occur, no matter how AtlasTiger will organise its own movements. Both robots start their
journeys at the dawn of the same day in their correponding starting villages (and spend the day
there by charging batteries etc).

Input Specification

The first line of input contains five integers N , M , F , T , S (1 ≤ N ≤ 105, 0 ≤ M ≤ 2 · 105, 0 ≤
F ≤ N − 1, 0 ≤ T ≤ N − 1, 0 ≤ S ≤ N − 1). N is the number of villages, M is the number
of paths between pairs of villages, F is the label of the destination village, T is the label of
village in which AtlasTiger is originally located, S is the label of village in which LRATB is
originally located. The villages are labelled 0, 1, . . . , N − 1. Each of the next M lines contain
a description of one path between adjacent villages, the description consists of the labels of the
villages separated by space. No path connects a village to itself, no two paths connect the same
villages.

Output Specification

Output either minimal number of nights for LRATB to reach destination or output string death

if it is not possible, that is, if there is no path that can guarantee interference-free journey for
LRATB from S to F.

Sample Input 1

5 4 0 1 4

0 1

1 2

2 3

3 4

Output for Sample Input 1

4

Sample Input 2

5 5 0 1 4

0 1

1 2

1 3

2 3

3 4

Output for Sample Input 2

death

Sample Input 3

3 2 0 2 1

2 1

0 1

Output for Sample Input 3

1

Sample Input 4

4 3 0 1 3

2 1

2 3

0 1

Output for Sample Input 4

4

acm
cz
acm
cz

Czech ACM Student Chapter Czech Technical University in Prague

Charles University in Prague Technical University of Ostrava
Masaryk University University of Žilina

Pavol Jozef Šafárik University in Košice Matej Bel University in Banská Bystrica
Slovak University of Technology

CTU Open Contest 2022

Shamans

shamans.c, shamans.cpp, Shamans.java, shamans.py

Cimrman has gathered a number of important shamans from local tribes. He wants to conduct
an experiment in which he will investigate whether an intense drumming can create resonance
effects in the jungle that will suppress growth of unwelcome species. He is going to select a
group of shamans most suitable for the experiment.

Each of the shamans who will take part in the experiment must get a piece of parchment made
of a sacred ant-eater skin. Shamans demand that each of them must get a piece of the same
shape and size.

Cimrman had prepared the parchment in such a way that its division can be easily modelled by
a computer algorithm. In particular, the parchment consists of square blocks of identical size.
Two adjacent blocks always share the full length of their edges. At some places, the parchment
can be divided into two pieces by applying a single cut along only one edge between two adjacent
blocks. Only these places on the parchment may be used for subsequent cutting.

Figure 1: Optimal solution for the first sample input. Using the two thick cuts, three identical
parchment pieces can be created.

First, the most senior shaman will cut off his piece of parchment using a single cut along the
edge of one block. Then the second most senior shaman will cut off his piece of parchment in the
same way, and so on, in the order of decreasing seniority of the shamans. The last shaman to get
a piece of the parchment will take, without any cutting, the remaining part of the parchment,
after all previous shamans had cut and taken their pieces. All pieces cut off must be of the
same shape and size, and each shaman must get exactly one piece of the parchment. Also, the
shape and size of the final remaining piece of the parchment, taken by the last shaman, must be
the same as the shape and size of all previous pieces. Rotation is allowed when comparing the
pieces. Flipping a piece is not allowed, as the reverse side does not look the same as the front
side.

Given the shape and size of the whole parchment, Cimrman’s goal is to employ the maximum
possible number of shamans.

Input Specification

The first input line contains integers N and M (1 ≤ N,M ≤ 300). The next N lines contain a
matrix of N rows and M columns. Each element is either a dot ’.’ representing empty space or
a hash symbol ’#’ representing the parchment. The parchment is guaranteed to be connected
(one piece) and non-empty.

Output Specification

Output the maximum number of shamans that can take part in the experiment.

Sample Input 1

5 7

..###..

...##..

#####.#

###.###

#...###

Output for Sample Input 1

3

Sample Input 2

7 5

.##..

#####

...##

...#.

...#.

...##

...##

Output for Sample Input 2

1

acm
cz
acm
cz

Czech ACM Student Chapter Czech Technical University in Prague

Charles University in Prague Technical University of Ostrava
Masaryk University University of Žilina

Pavol Jozef Šafárik University in Košice Matej Bel University in Banská Bystrica
Slovak University of Technology

CTU Open Contest 2022

Transmitter

transmitter.c, transmitter.cpp, Transmitter.java, transmitter.py

There is one radio transmitter on each floor in the Cimrman Labs main building. The trans-
mitters are going to communicate with Cimrman Lunar Base on the far side of the Moon.
Cimrman needs a strong signal, therefore more transmitters will work simultaneously to attain
good connection characteristics.

However, for other practical reasons, the working transmitters have to be located in a single
block of floors, that is, there should not be any floor with unused transmitter anywhere between
other two floors with used transmitters.

Immediately after the start of the transmission, at the beginning of each second, each transmitter
sends out also the so-called coordination signal (CoSi) on a particular coordination frequency.
A separate sequence of coordination frequencies is given for each transmitter. The transmitter
sends out CoSi on i-th frequency in the sequence at the beginning of i-th second. The number
of seconds in which CoSi is sent out is equal to the length of the sequence. When the sequence
of frequencies is exhausted the transmitter stops sending out CoSi, but it still continues to do
its main work.

The transmitters often work in pairs to boost each other performance. The performance quality
of a pair of transmitters is equal to the maximum length in seconds of a time interval immediately
after the start of the transmission in which both transmitters in the pair send out CoSi on the
same frequency. This interval ends when the transmitters in the pair send out a CoSi on different
frequencies or when any of them stops sending out CoSi altogether.

When a group of more than two transmitters work together the performance quality is calculated
as the sum of performance qualities of all possible pairs of transmitters in the group.

Now, Cimrman wants to choose a group of transmitters located in a contiguous block of floors
in such a way that the performance quality of the group is at least a given predefined value K.

Help Cimrman calculate the number of such possible groups of transmitters.

Input Specification

The first line of input contains two integers N , K (1 ≤ N ≤ 106, 1 ≤ K ≤ 109), the number of
transmitters and the predefined performance quality value. Each of the next N lines contains a
string of lowercase letters. Each string represents the sequence of CoSi frequencies of a particular
transmitter, each letter represents CoSi frequency in one second. The i-th string represents the
CoSi frequencies of the transmitter on the i-th floor.

The same letters across the input represent the same frequencies, different letters represent
different frequencies. The sum of lengths of all strings is guaranteed to be at most 106.

Output Specification

Output the number of groups of transmitters which satisfy Cimrman’s demands and have per-
formance quality at least K.

Sample Input 1

4 3

set

stop

setting

state

Output for Sample Input 1

3

Sample Input 2

5 6

a

rating

rating

b

c

Output for Sample Input 2

6

acm
cz
acm
cz

Czech ACM Student Chapter Czech Technical University in Prague

Charles University in Prague Technical University of Ostrava
Masaryk University University of Žilina

Pavol Jozef Šafárik University in Košice Matej Bel University in Banská Bystrica
Slovak University of Technology

CTU Open Contest 2022

Volcanoes

volcanoes.c, volcanoes.cpp, Volcanoes.java, volcanoes.py

Cimrman is going to visit all his artificial prairie volcanoes he has built in the previous few
years. He is going to travel in his one-of-a-kind volcanology terrain vehicle.

Unfortunately, the vehicle has been currently damaged by an accidental meteorite strike. It can
travel in only three possible directions, directly north, south or east. Cimrman decided this
should not be a major problem, he is planning to organise his journey in such a way that the
vehicle always travels in one of these three directions. Another peculiarity of the vehicle is that
it can change its direction immediately.

Cimrman can start his journey at any point on the prairie. He wants the journey to be as short
as possible.

Input Specification

The first line of input contains one integer N (0 < N ≤ 105), the number of volcanoes. Each of
the next N lines contains coordinates of one volcano. A volcano is represented as a point on a
plane, first its x coordinate is given, then follows the y coordinate.

The point coordinates are two integer values in the range between −106 and 106 inclusive.
Direction of positive x-coordinate corresponds to the eastward direction in the terrain.

Output Specification

Print the length of a shortest journey which visits all the volcanoes. Assume the journey starts
at the first volcano visit and ends at the last volcano visit.

Sample Input 1

4

2 3

3 2

1 1

5 5

Output for Sample Input 1

10

Sample Input 2

5

1 2

5 4

3 6

7 8

1 1

Output for Sample Input 2

17

acm
cz
acm
cz

Czech ACM Student Chapter Czech Technical University in Prague

Charles University in Prague Technical University of Ostrava
Masaryk University University of Žilina

Pavol Jozef Šafárik University in Košice Matej Bel University in Banská Bystrica
Slovak University of Technology

CTU Open Contest 2022

Wagon

wagon.c, wagon.cpp, Wagon.java, wagon.py

Cimrman devised and built a railroad freight wagon capable of carrying a single construction
crane. It has a specially built mechanism which automatically collapses and restores the crane
again as the train moves through tunnels, narrow corridors in woods etc.

As any other active inventor, Cimrman is always short of money and he typically uses his
current inventions in various unexpected ways to make him money for investments in his future
creations.

This time he devised another unorthodox scheme. He attached the empty crane wagon to one
of the regular cross country trains. Only one journey of the train is available to Cimrman and
his crane wagon and he cannot change the direction of travel throughout the journey.

There is a list of crane types which can be sold and bought in each of the cities on the train
journey. Often, the prices differ in various cities. Thus, Cimrman plans to buy a crane in one
of the cities on the train path, load it on the train and in some of the next cities sell it with
profit. He may repeat this action more times, each time buying a crane in a city and selling it
in some of the next cities on the journey. Each time, he can transport only one crane. Also, he
can travel between cities without carrying a crane if he considers it to be profitable.

Cimrman’s private budget at the beginning of the journey is big enough to buy any crane in
any city.

Cimrman wants to achieve maximum possible profit from the whole journey.

Input Specification

The first line contains integer N (1 ≤ N ≤ 105), the number of cities on the train path.

For each of N cities, there is an input block starting with line containing one integer M (1 ≤
M ≤ 10), the number of crane types for sale in that city.

Next in the block, there are M lines, each contains two integers I, P (0 ≤ I ≤ 109, 0 ≤ P ≤ 104),
the ID of crane type for sale and its price. The order of the blocks is the same as the order of
the cities on the train journey. The IDs are mutually different in a block and the price applies
to both buying and selling the crane. In any city, Cimrman is allowed to both sell and buy only
the types of cranes with the listed IDs in that city.

Output Specification

Output one integer - the biggest profit Cimrman can achieve using his scheme.

Sample Input 1

5

1

1 3

1

1 2

1

1 3

1

1 5

1

1 1

Output for Sample Input 1

3

Sample Input 2

4

2

1 2

2 1

2

1 3

2 5

1

1 4

1

2 6

Output for Sample Input 2

5

